Episcopic 3D Imaging Methods: Tools for Researching Gene Function
نویسندگان
چکیده
This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 microm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases.
منابع مشابه
Visualizing Vertebrate Embryos with Episcopic 3D Imaging Techniques
The creation of highly detailed, three-dimensional (3D) computer models is essential in order to understand the evolution and development of vertebrate embryos, and the pathogenesis of hereditary diseases. A still-increasing number of methods allow for generating digital volume data sets as the basis of virtual 3D computer models. This work aims to provide a brief overview about modern volume d...
متن کاملThree-Dimensional (3D) Visualisation of the Cardiovascular System of Mouse Embryos and Fetus
The mouse is the most appropriate biomedical model organism for researching the mechanistic function of genetic factors in normal embryogenesis and in the genesis of cardiovascular malformations. Three-dimensional (3D) visualisation of the developing organs of wild type and genetically modified mouse embryos is essential for such research. This paper aims at discussing imaging methods that perm...
متن کاملPhenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy
The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mous...
متن کاملEpiscopic three-dimensional imaging of embryos.
Episcopic fluorescence image capturing (EFIC) and high-resolution episcopic microscopy (HREM) are related techniques that are used to generate digital volume data and create three-dimensional (3D) images. Both techniques require specimens that are embedded in an appropriate medium, and images are captured from successive sections before removal from the embedded tissue block. EFIC detects autof...
متن کاملEmbedding embryos for high-resolution episcopic microscopy (HREM).
Episcopic fluorescence image capturing (EFIC) and high-resolution episcopic microscopy (HREM) are related techniques that are used to generate digital volume data and create three-dimensional (3D) images. Both techniques require specimens that are embedded in an appropriate medium, and images are captured from successive sections before removal from the embedded tissue block. EFIC detects autof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Genomics
دوره 9 شماره
صفحات -
تاریخ انتشار 2008